.. DO NOT EDIT. .. THIS FILE WAS AUTOMATICALLY GENERATED BY SPHINX-GALLERY. .. TO MAKE CHANGES, EDIT THE SOURCE PYTHON FILE: .. "_auto_examples/1_basic/plot_audio_representation.py" .. LINE NUMBERS ARE GIVEN BELOW. .. only:: html .. note:: :class: sphx-glr-download-link-note :ref:`Go to the end ` to download the full example code .. rst-class:: sphx-glr-example-title .. _sphx_glr__auto_examples_1_basic_plot_audio_representation.py: Audio representation ==================== An audio signal can be represented in both, temporal and spectral domains. These representations are complementary and fundamental to understand the audio signal characteristics. In this introductory example we will load an audio signal, apply basic transformations to better understand its features in time and frequency. .. GENERATED FROM PYTHON SOURCE LINES 14-15 Load an audio file and plot the waveform .. GENERATED FROM PYTHON SOURCE LINES 15-22 .. code-block:: Python import matplotlib.pyplot as plt from maad import sound from maad import util s, fs = sound.load('../../data/spinetail.wav') util.plot_wave(s, fs) plt.show() .. image-sg:: /_auto_examples/1_basic/images/sphx_glr_plot_audio_representation_001.png :alt: plot audio representation :srcset: /_auto_examples/1_basic/images/sphx_glr_plot_audio_representation_001.png :class: sphx-glr-single-img .. GENERATED FROM PYTHON SOURCE LINES 23-26 It can be noticed that in this audio there are four consecutive songs of the spinetail *Cranioleuca erythorps*, every song lasting of approximatelly two seconds. Let's trim the signal to zoom in on the details of the song. .. GENERATED FROM PYTHON SOURCE LINES 26-29 .. code-block:: Python s_trim = sound.trim(s, fs, 5, 8) .. GENERATED FROM PYTHON SOURCE LINES 30-31 Onced trimmed, lets compute the envelope of the signal, the Fourier and short-time Fourier transforms. .. GENERATED FROM PYTHON SOURCE LINES 31-35 .. code-block:: Python env = sound.envelope(s_trim, mode='fast', Nt=128) pxx, fidx = sound.spectrum(s, fs, nperseg=1024, method='welch') Sxx, tn, fn, ext = sound.spectrogram(s_trim, fs, window='hann', nperseg=1024, noverlap=512) .. GENERATED FROM PYTHON SOURCE LINES 36-38 Finally, we can visualize the signal characteristics in the temporal and spectral domains. .. GENERATED FROM PYTHON SOURCE LINES 38-45 .. code-block:: Python fig, ax = plt.subplots(4,1, figsize=(8,10)) util.plot_wave(s_trim, fs, ax=ax[0]) util.plot_wave(env, fs, ax=ax[1]) util.plot_spectrum(pxx, fidx, ax=ax[2]) util.plot_spectrogram(Sxx, extent=ext, ax=ax[3], colorbar=False) plt.show() .. image-sg:: /_auto_examples/1_basic/images/sphx_glr_plot_audio_representation_002.png :alt: plot audio representation :srcset: /_auto_examples/1_basic/images/sphx_glr_plot_audio_representation_002.png :class: sphx-glr-single-img .. rst-class:: sphx-glr-timing **Total running time of the script:** (0 minutes 0.504 seconds) .. _sphx_glr_download__auto_examples_1_basic_plot_audio_representation.py: .. only:: html .. container:: sphx-glr-footer sphx-glr-footer-example .. container:: sphx-glr-download sphx-glr-download-jupyter :download:`Download Jupyter notebook: plot_audio_representation.ipynb ` .. container:: sphx-glr-download sphx-glr-download-python :download:`Download Python source code: plot_audio_representation.py ` .. only:: html .. rst-class:: sphx-glr-signature `Gallery generated by Sphinx-Gallery `_