maad.features.all_temporal_features
- maad.features.all_temporal_features(s, fs, nperseg=1024, roi=None, display=False, **kwargs)[source]
Compute all the temporal features for a signal.
- Parameters:
- s1D array
Input audio signal
- fsfloat
Sampling frequency of audio signal
- npersegint, optional
Length of segment to compute the FFT. The default is 1024.
- roipandas.Series, optional
Region of interest where temporal features will be computed. Series must have a valid input format with index: min_t, min_f, max_t, max_f. The default is None.
- kwargsadditional keyword arguments
If window=’hann’, additional keyword arguments to pass to sound.spectrum.
- Returns:
- temporal_featurespandas DataFrame
DataFrame with all temporal features computed in the spectrum
Examples
>>> from maad import features, sound >>> s, fs = sound.load('../data/spinetail.wav')
Compute all the temporal features
>>> temporal_features = features.all_temporal_features(s,fs) >>> print(temporal_features.iloc[0]) sm -2.043264e-19 sv 1.167074e-03 ss -6.547980e-03 sk 2.471161e+01 Time 5% 1.219048e+00 Time 25% 5.712109e+00 Time 50% 1.181896e+01 Time 75% 1.655583e+01 Time 95% 1.775166e+01 zcr 1.050040e+04 duration_50 1.001495e+01 duration_90 1.654441e+01 Name: 0, dtype: float64