maad.sound.load_spectrogram
- maad.sound.load_spectrogram(filename, fs, duration, flims=None, flipud=True, verbose=False, display=False, **kwargs)[source]
Load an image from a file or an URL
- Parameters:
- filenamestring
Image file name, e.g.
test.jpg
or URL.- fsscalar
Sampling frequency of the audiogram (in Hz)
- durationscalar
Duration of the audiogram (in s)
- flimslist of 2 scalars [min, max], optional, default is None
flims corresponds to the min and max boundary frequency values
- flipudboolean, optional, default is True
Vertical flip of the matrix (image)
- verboseboolean, optional, default is False
if True, print message in terminal
- displayboolean, optional, default is False
if True, display the image
- kwargs, optional. This parameter is used by plt.plot
- figsizetuple of integers, optional, default: (4,10)
width, height in inches.
- titlestring, optional, default‘Spectrogram’
title of the figure
- xlabelstring, optional, default‘Time [s]’
label of the horizontal axis
- ylabelstring, optional, default‘Amplitude [AU]’
label of the vertical axis
- cmapstring or Colormap object, optional, default is ‘gray’
See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: ‘hsv’, ‘hot’, ‘bone’, ‘tab20c’, ‘jet’, ‘seismic’, ‘viridis’…
- vmin, vmaxscalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize luminance data. Note if you pass a norm instance, your settings for vmin and vmax will be ignored.
- extentscalars (left, right, bottom, top), optional, default: None
The location, in data-coordinates, of the lower-left and upper-right corners. If None, the image is positioned such that the pixel centers fall on zero-based (row, column) indices.
- dpiinteger, optional, default is 96
Dot per inch. For printed version, choose high dpi (i.e. dpi=300) => slow For screen version, choose low dpi (i.e. dpi=96) => fast
- formatstring, optional, default is ‘png’
Format to save the figure
… and more, see matplotlib
- Returns:
- Sxxndarray
The different color bands/channels are stored in the third dimension, such that a gray-image is MxN, an RGB-image MxNx3 and an RGBA-image MxNx4.
- tn1d ndarray of floats
time vector (horizontal x-axis)
- fn1d ndarray of floats
Frequency vector (vertical y-axis)
- extentlist of scalars [left, right, bottom, top]
The location, in data-coordinates, of the lower-left and upper-right corners.
Examples
>>> import maad >>> xenocanto_link = 'https://www.xeno-canto.org/sounds/uploaded/DTKJSKMKZD/ffts/XC445081-med.png' >>> Sxx, tn, fn, ext = maad.sound.load_spectrogram(filename=xenocanto_link, fs=44100, flims=[0,15000], duration = 10, ) >>> print("The time resolution of the spectrogram is {} s and the frequency resolution is {} Hz".format(tn[1]-tn[0], fn[1]-fn[0])) The time resolution of the spectrogram is 0.020876826722338204 s and the frequency resolution is 94.33962264150944 Hz >>> import matplotlib.pyplot as plt >>> ax, fig = maad.util.plot2d(Sxx,extent=ext)