maad.util.heatmap_by_date_and_time
- maad.util.heatmap_by_date_and_time(dataframe, disp_column, date_format='%V', date_range=[1, 53], time_resolution='30T', time_range=['00:00', '23:59'], start_hour='00:00', full_display=False, date_min_to_disp=1, date_max_to_disp=53, cb_legend='', display=True, verbose=False, **kwargs)[source]
Plot a heatmap of a features by time (x-axis) and date (y-axis).
- Parameters:
- dataframepandas.DataFrame
The input DataFrame containing the data. Must contain a column (or index) date in the format %Y-%m-%d %H:%M%S
- disp_columnstr
The name of the column to be displayed.
- date_formatstr, optional
The format of the date. The default is “%V”. (See https://docs.python.org/3/library/datetime.html for format codes) Possible format are : - “%V” for week number (from 1 to 53) - “%m” for Month (from 1 to 12) - “%d” for Day (from 1 to 31 depending on the month) - “%m-%d” for Date without year (from 01-01 to 12-31) - “%y-%m-%d” for Date with year
- date_rangelist of int, optional
The range of date types to include. The default is [1, 53]. The format of the range depends on date_format. For instance, to get all the samples in the March, date_range would be [03-01, 03-31] and date_format would be “%m-%d”
- time_resolutionstr, optional
The time resolution. The default is “30T”. T is for minute. 30T means a time resolution of 30 min. Everything within this intervale is averaged Other time formats are H for hour and D for day.
- time_rangelist of str, optional
The time range to consider. The default is [“00:00”, “23:59”].
- start_hourstr, optional
The start hour. The default is “12:00”.
- full_displaybool, optional
Whether to display the full date range. The default is False.
- date_min_to_dispint, optional
The minimum date on the y-axis. The default is 1. The value depends on the date_format. See date_format to know the possible formats and the range of possible values
- date_max_to_dispint, optional
The maximum date on the y-axis. The default is 53. The value depends on the date_format. See date_format to know the possible formats and the range of possible values
- cb_legendstr, optional
The colorbar legend label. The default is “”.
- verbosebool, optional
If True, display verbose information. The default is False.
- **kwargs
Specific to this function:
ftime : Time format to display as x label by default ‘%Y-%m-%d’(see https://docs.python.org/fr/3.6/library/datetime.html?highlight=strftime#strftime-strptime-behavior)
Specific to matplotlib:
figsize : tuple of integers, optional, default: (4,10) width, height in inches.
title : string, optional, default : ‘Spectrogram’ title of the figure
xlabel : string, optional, default : ‘Time [s]’ label of the horizontal axis
ylabel : string, optional, default : ‘Amplitude [AU]’ label of the vertical axis
- xtickstuple of ndarrays, optional, defaultnone
ticks : array_like => A list of positions at which ticks should be placed. You can pass an empty list to disable yticks.
labels : array_like, optional => A list of explicit labels to place at the given locs.
- ytickstuple of ndarrays, optional, defaultnone
ticks : array_like => A list of positions at which ticks should be placed. You can pass an empty list to disable yticks.
labels : array_like, optional => A list of explicit labels to place at the given locs.
- cmapstring or Colormap object, optional, default is ‘gray’
See https://matplotlib.org/examples/color/colormaps_reference.html in order to get all the existing colormaps examples: ‘hsv’, ‘hot’, ‘bone’, ‘tab20c’, ‘jet’, ‘seismic’, ‘viridis’…
- vmin, vmaxscalar, optional, default: None
vmin and vmax are used in conjunction with norm to normalize luminance data. Note if you pass a norm instance, your settings for vmin and vmax will be ignored.
- extentlist of scalars [left, right, bottom, top], optional, default: None
The location, in data-coordinates, of the lower-left and upper-right corners. If None, the image is positioned such that the pixel centers fall on zero-based (row, column) indices.
- nowboolean, optional, defaultTrue
if True, display now. Cannot display multiple images. To display mutliple images, set now=False until the last call for the last image
… and more, see matplotlib
- Returns:
- df_meanpd.DataFrame
The heatmap with mean values.
- df_std :pd.DataFrame
The heatmap with standard deviation values.
- figmatplotlib.figure.Figure
The generated matplotlib figure.
- axmatplotlib.axes.Axes
The generated matplotlib axis.