maad.util.plot_spectrum
- maad.util.plot_spectrum(pxx, f_idx, ax=None, flims=None, log_scale=False, fill=True, **kwargs)[source]
Plot power spectral density estimate (PSD).
- Parameters:
- pxx1d ndarray
Power spectral density estimate computed with maad.sound.spectrum.
- f_idx1d ndarray
Index of frequencies associated with the PSD.
- axmatplotlib.axes, optional
Pre-existing axes for the plot. The default is None.
- flimstuple, optional
Minimum and maximum spectral limits for the display (min_f, max_f). Default is None.
- log_scalebool, optional
Use a logarithmic scale to display amplitude values. The default is False.
- fillbool, optional
Fill the area between the curve and the minimum value.
- **kwargsmatplotlib figure properties
Other keyword arguments that are passed down to matplotlib.axes.
- Returns:
- axmatplotlib.axes
The matplotlib axes associated to plot.
See also
Examples
Plot a spectrum of an audio signal.
>>> from maad import sound, util >>> s, fs = sound.load('../data/spinetail.wav') >>> pxx, f_idx = sound.spectrum(s, fs, nperseg=1024) >>> util.plot_spectrum(pxx, f_idx)
Use plot_spectrum with predifined matplotlib axes.
>>> import matplotlib.pyplot as plt >>> s, fs = sound.load('../data/spinetail.wav') >>> s_slice = sound.trim(s, fs, 5, 8) >>> pxx, f_idx = sound.spectrum(s_slice, fs, nperseg=1024) >>> fig, ax = plt.subplots(2,1, figsize=(10,6)) >>> util.plot_wave(s_slice, fs, ax=ax[0]) >>> util.plot_spectrum(pxx, f_idx, ax=ax[1], log_scale=True)