maad.util.index_bw
- maad.util.index_bw(fn, bw)[source]
Select all the index coresponding to a selected frequency band.
- Parameters:
- fn1d ndarray of scalars
Vector of frequencies
- bwsingle value or tupple of two values
if single value : frequency to select if tupple of two values : min frequency and max frequency to select
- Returns:
- index1d ndarray of scalars
Vector of booleans corresponding to the selected frequency(-ies)
Examples
>>> w, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> Sxx_power,tn,fn,_ = maad.sound.spectrogram(w,fs,window='hann',noverlap=512, nFFT=1024) >>> Sxx_dB = maad.util.power2dB(Sxx_power) # convert into dB >>> bw = (2000,6000) #in Hz >>> fig_kwargs = {'vmax': Sxx_dB.max(), 'vmin': -90, 'extent':(tn[0], tn[-1], fn[0], fn[-1]), 'figsize':(10,13), 'title':'Power Spectrum Density (PSD)', 'xlabel':'Time [sec]', 'ylabel':'Frequency [Hz]', } >>> maad.util.plot2d(Sxx_dB,**fig_kwargs) >>> Sxx_dB_crop = Sxx_dB[maad.util.index_bw(fn, bw)] >>> fn_crop = fn[maad.util.index_bw(fn, bw)] >>> fig_kwargs = {'vmax': Sxx_dB.max(), 'vmin': -90, 'extent':(tn[0], tn[-1], fn_crop[0], fn_crop[-1]), 'figsize':(10*len(fn_crop)/len(fn),13), 'title':'Power Spectrum Density (PSD)', 'xlabel':'Time [sec]', 'ylabel':'Frequency [Hz]', } >>> maad.util.plot2d(Sxx_dB_crop,**fig_kwargs)