maad.features.all_temporal_alpha_indices
- maad.features.all_temporal_alpha_indices(s, fs, verbose=False, display=False, **kwargs)[source]
Compute 16 temporal domain acoustic indices.
- Parameters:
- s1D array
Audio to process (wav)
- fsfloat
Sampling frequency of the audio (Hz)
- verboseboolean, default is False
print indices on the default terminal
- displayboolean, default is False
Display graphs
- kwargsarguments for functions:
temporal_leq(s, fs, gain, Vadc, sensitivity, dBref, dt)
temporal_snr(s, mode, Nt)
temporal_median(s, mode, Nt)
temporal_entropy(s, compatibility, mode, Nt)
temporal_activity (s,dB_threshold, mode, Nt)
temporal_events (s, fs, dB_threshold, rejectDuration, mode, Nt,display)
For envelope
- modestr, optional, default is “fast”
Select the mode to compute the envelope of the audio waveform
- “fast”The sound is first divided into frames (2d) using the
function _wave2timeframes(s), then the max of each frame gives a good approximation of the envelope.
- “Hilbert”estimation of the envelope from the Hilbert transform.
The method is slow
- Ntinteger, optional, default is 512
Size of each frame. The largest, the highest is the approximation.
For entropy
- compatibilitystring {‘QUT’, ‘seewave’}, default is ‘QUT’
Select the way to compute the temporal entropy.
QUT : entropy of the envelope²
seewave : entropy of the envelope
For LEQt calculation
- gaininteger
Total gain applied to the sound (preamplifer + amplifier)
- Vadcscalar, optional, default is 2Vpp (=>+/-1V)
Maximal voltage (peak to peak) converted by the analog to digital convertor ADC
- sensitivityfloat, optional, default is -35 (dB/V)
Sensitivity of the microphone
- dBrefinteger, optional, default is 94 (dBSPL)
Pressure sound level used for the calibration of the microphone (usually 94dB, sometimes 114dB)
- dtfloat, optional, default is 1 (second)
Integration step to compute the Leq (Equivalent Continuous Sound level)
For audio activity and events
- dB_thresholdscalar, optional, default is 3dB
data >Threshold is considered to be an event if the length is > rejectLength
- rejectDurationscalar, optional, default is None
event shorter than rejectDuration are discarded duration is in s
- Returns:
- df_temporal_indices: Pandas dataframe
Dataframe containing of the calculated audio indices : ZCR, MEANt, VARt, SKEWt, KURTt, LEQt, BGNt, SNRt, MED, Ht, ACTtFraction, ACTtCount, ACTtMean, EVNtFraction, EVNtMean, EVNtCount
See also
Examples
>>> import maad
>>> s, fs = maad.sound.load('../data/cold_forest_night.wav') >>> df_temporal_indices_NIGHT = maad.features.all_temporal_alpha_indices (s,fs) >>> s, fs = maad.sound.load('../data/cold_forest_daylight.wav') >>> df_temporal_indices_DAY = maad.features.all_temporal_alpha_indices (s,fs)
Variation between night and day
>>> variation = abs(df_temporal_indices_DAY - df_temporal_indices_NIGHT)/df_temporal_indices_NIGHT*100 >>> print('LEQt variation night vs day: %2.2f %%' % variation['LEQt'][0]) LEQt variation night vs day: 29.66 % >>> print('Ht variation night vs day: %2.2f %%' % variation.Ht.iloc[0]) Ht variation night vs day: 2.33 % >>> print('MEANt variation night vs day: %2.2f %%' % variation['MEANt'][0]) MEANt variation night vs day: 299.62 % >>> print('VARt variation night vs day: %2.2f %%' % variation['VARt'][0]) VARt variation night vs day: 1664.02 % >>> print('EVNtFraction variation night vs day: %2.2f %%' % variation['EVNtFraction'][0]) EVNtFraction variation night vs day: 98.48 %